Can Chloride concentration regulate sodium epithelial channels?

Comparing effects of extracellular chloride concentration on different isoforms of sodium epithelial ion channels ($\alpha\beta\gamma$ -ENaC and $\delta\beta\gamma$ -ENaC).

Carter. E, Althaus. M

Biological sciences, school of natural and environmental sciences. 160260100. E.Carter3@newcastle.ac.uk

Introduction

- Epithelial sodium channels (ENaC) mediate absorption of sodium across epithelia, which is essential for body salt and water balance.
- There are two ENaC isoforms which differ in one subunit; $\delta\beta\gamma$ -ENaC or α $\beta\gamma$ -ENaC.
- it has been found that one form is usually more sensitive to stimuli than the other.

<u>Aims</u>

- To see if extracellular chloride concentration regulates ENaC activity.
- And whether these isoforms also differ in sensitivity to extracellular chloride concentration.

Results

Data are presented as mean values \pm standard deviation (SD). For *Xenopus* $\delta\beta\gamma$ -ENaC, the ratio was 0.686 \pm 0.172 (n=4) when ORS was

Methods

6.

We used Xenopus laevis oocytes as an expression system

- 1. Ovary lobe from X. laevis was dissected and oocytes were isolated and sorted.
- 2. Oocytes were injected with 32.2nl of *Xenopus* $\alpha\beta\gamma$ -ENaC cRNA, $\delta\beta\gamma$ -ENaC cRNA or water (as a control).
- 3. ENaC activity was measured by microelectrode electrophysiology using the Two-Electrode Voltage-Clamp (TEVC) technique.
- Transmembrane currents were measured when employing oocyte ringer's solution (ORS) or low Cl⁻ ORS with or without amiloride (100 μM) which blocks both ENaC isoforms. Allowing amiloride-sensitive currents to be determined
- 5. Transmembrane currents were recorded when oocytes were exposed twice to ORS or to ORS and then low Cl⁻ ORS, running amiloride between the two exposures. Normalized ENaC current values representing the ratio of the first and second current were then calculated.
 - ORS; 90mM NaCl, 1mM KCl, 2mM CaCl₂, 5mM HEPES, pH 7.4) or low Cl⁻ ORS (1mM KCl, 2mM CaCl₂, 5mM HEPES, 45mM Na₂SO₄, 45mM Mannitol)

Table 1: The concentrations of compounds making up either ORS or low Chloride ORS

applied twice, and significantly lower (0.289 \pm 0.0836; n=6) when low Cl-ORS was applied (Mann-Whitney test, U = 34, n = 4,6, p = 0.0142). For *Xenopus* $\alpha\beta\gamma$ -ENaC the ratio was 0.682 \pm 0.079 (n=3) when ORS was applied twice, and significantly lower (0.290 \pm 0.1875, n=5) when low Cl-ORS was applied (Mann-Whitney test, U = 21, n = 3,5, p = 0.037). When water was injected instead of cDNA, recordings of transmembrane currents showed no change when employing amiloride, ORS or low Cl-ORS.

Figure 2: Statistical analysis of $\delta\beta\gamma$ -ENaC data. Depicted are normalised ENaC currents values. This represents the ratio of the first and second current stimulated by low chloride ORS, where a significant decrease was found when low chloride was applies second (Mann-Whitney test, U = 34, n = 4,6, p = 0.0142)

	ORS (mM)	Low Chloride ORS (mM)
NaCl	90	-
Na ₂ SO ₄	-	45
Mannitol	-	45
KCI	1	1
CaCl ₂	2	2
HEPES	5	5
	Disc Sele - - -	ected "healthy" egg stage V/VI eggs round good colouration clear separation of animal (brown) and vegetal (yellow)

These findingsdemonstrate that alow extracellular Cl-concentrationsignificantlydecreases the activityof both Xenopus αβγ-ENaC and δβγ-ENaC.

Figure 3: Statistical analysis of $\alpha\beta\gamma$ -ENaC data. Depicted are normalised ENaC currents values. This represents the ratio of the first and second current stimulated by low chloride ORS, where a significant decrease was found when low chloride was applies second (Mann-Whitney test, U= 21, n = 3,5, p = 0.037)

Extracellular chloride represent a novel mechanism regulating ENaC, which is crucial in controlling electrolyte homeostasis in vertebrates.